mathskills kids

Name:
Class:

Exponents with fractional bases

Evaluate the following expressions

$$
\begin{array}{rlrl|r}
\left(\frac{5}{6}\right)^{3} & =\frac{(5)^{3}}{(6)^{3}} & \left(\frac{3}{4}\right)^{4} & = & \left(\frac{52}{97}\right)^{0}= \\
& =\frac{5 \times 5 \times 5}{6 \times 6 \times 6} & = & & \\
& =\frac{125}{216} & & & \\
& = & & &
\end{array}
$$

$$
\left(\frac{5}{3}\right)^{5}=\quad\left(\frac{1}{2}\right)^{7}=
$$

$$
\left(\frac{3}{8}\right)^{2}=
$$

$$
\left(\frac{10}{4}\right)^{1}=\quad \quad \quad \quad\left(\frac{7}{9}\right)^{2}=\quad . \quad . \quad\left(\frac{4}{7}\right)^{2}=
$$

In each case, solve and tick most the correct answer.
$\left(\frac{10}{4}\right)^{2}=? \quad \square \frac{100}{16}$
[] $\frac{729}{4,096}$
(1) $\frac{729}{4,069}$
$\left(\frac{3}{5}\right)^{3}=?$
[$\frac{27}{125}$
(a) $\frac{27}{150}$
$\left(\frac{5}{1}\right)^{1} \quad \square \frac{12}{5}$
$\square \frac{128}{2,187}$
$\left(\frac{5}{12}\right)^{1}=? \quad \square \frac{5}{12}$
$\left(\frac{2}{3}\right)^{7}=?$

(1) $\frac{129}{2,187}$
$\left(\frac{6}{8}\right)^{0}=?$

Solution

mathskills kids

Name:
Class:

Exponents with fractional bases

Evaluate the following expressions

$$
\begin{aligned}
& \left(\frac{5}{6}\right)^{3}=\frac{(5)^{3}}{(6)^{3}} \\
& \left(\frac{3}{4}\right)^{4}=\frac{(3)^{4}}{(4)^{4}} \\
& \left(\frac{52}{97}\right)^{0}=\frac{(52)^{0}}{(97)^{0}} \\
& =\frac{3 \times 3 \times 3 \times 3}{4 \times 4 \times 4 \times 4} \\
& =\frac{5 \times 5 \times 5}{6 \times 6 \times 6} \\
& =\frac{125}{216} \\
& =\frac{1}{1} \\
& =1 \\
& \left(\frac{5}{3}\right)^{5}=\frac{(5)^{5}}{(3)^{5}} \\
& \left(\frac{1}{2}\right)^{7}=\frac{(1)^{7}}{(2)^{7}} \\
& \left(\frac{3}{8}\right)^{2}=\frac{(3)^{2}}{(8)^{2}} \\
& =\frac{5 \times 5 \times 5 \times 5 \times 5}{3 \times 3 \times 3 \times 3 \times 3} \\
& =\frac{1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =\frac{3 \times 3}{8 \times 8} \\
& =\frac{3,125}{243} \\
& =\frac{1}{128} \\
& =\frac{9}{64}
\end{aligned}
$$

II In each case, solve and tick the most correct answer.

