

1				1	1=	, L		ماما	fu-	a+:-	5	د بر ر	- h ·	ا:ا ما		d = :-		o i :=	. +-		161	- C -	0 -	اماءاء		_)
					10\ 	N TO) a	da	Trac	ctio	ins	WIT	in t	ınıı	ке (der	iom	nina	ato	rs L	ISIC	ig r	no	dels	5		
	Us	ing	the	e g	ive	n n	nod	els	as	an	aic	d, a	dd	the	e fo	llov	win	g f	rac	tio	ns.						
														b.													
						+								D.								_	_				
				7 16	-	+	1 4	=													<u>2</u> 6	-	-	<u>2</u> 3	=		

mathskills4kids

N 1	\bigcirc I	
Name:	Class:	

How to add fractions with unlike denominators using models

								_							_
	b							_							_
	 					-		-	+	\dashv					_
								\dashv		\dashv					_
	$\frac{7}{16} + \frac{1}{4} =$							2	_		2	_			_
						6			+		100		c		_
	Let's start by finding an equivalent fraction											anti	fract	.ion	
	of 4 with a denominator of 16.						eno								
	$\frac{1}{4} \text{ is equivalent to } \frac{1 \times 4}{4 \times 4} = \frac{4}{16}.$ Now, let's draw the model for $\frac{4}{16}$.		3	15 E	qui t'e	drav	nt to	$\frac{3}{3}$	x 2	= -	6 r 4				
	16		IVO	/V, TC		arav	V CITY		ode	110	6	-			
	$\frac{1}{4} = \frac{4}{16}$							2	_	:	<u>4</u> 6				
								3							
	Finally, let's add by counting the number of		Fina	ally,	leť:	s ad	d by	/ cc	unt	ing	the	nu	mb€	er of	
	shaded regions/squares in the models.		sha	ded	reg	gion	s/sq	uar	es i	n th	e m	nod	els.		
	(Each shaded square represent $\frac{1}{16}$)		(Ea	ch s	hac	ded	squa	are	repi	ese	ent	$\frac{1}{6}$)			
		_												_	_
_															_
	+ + + + + + + + + + + + + + + + + + + +						_	_	+	\dashv					_
								-		\dashv					
	7 4	-						2			1				_
	7 + 4 16							6	+		6				
	There are 11th $\frac{1}{16}$ shaded squares in the two					5th	6	hac	ded	sqa	ure	s in	the	two	
	models.		mod												_
	So, $\frac{7}{16} + \frac{1}{4} = \frac{7}{16} + \frac{4}{16} = \frac{11}{16}$		So,	6	+ <u>2</u> 3	=	6	+ 4 6	- =	6	= 1			-	_
		_							_						_

© http://mathskills4kids.com